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HIGHLIGHTS

• The study compares travel mode choice predictions of traditional decision-making frameworks such
as that of Expected Utility Theory (EUT) with the prediction capacity of Large Language Models
(LLMs).

• The study demonstrates that LLMs can nearly match the predictive performance of traditional
models like EUT, despite not being exposed to specific training examples.

• The study identifies three effective strategies for enhancing the predictive accuracy of LLMs in
travel mode choice: incorporating diverse features, creating behavior-focused prompts, and fine-
tuning the models with human reasoning data.

ABSTRACT

This study analyzed how Large Language Models (LLMs) make judgments in the context of the travel
mode choice decision-making process and existing behavioral studies, and compared it with a traditional
decision-making framework. Utilizing the Swissmetro dataset, we first applied Expected Utility Theory
via a Multinomial Logistic Model to establish a benchmark for travel mode choice predictions. We
then established three sets of experiments with GPT-3.5 and compared the results with the benchmark
model. First, we analyzed the impact of feature choice on LLM performance and reasoning. Second, we
investigated the value of role prompting in terms of human behaviors. Lastly, we surveyed students and
requested reasonings on travel behaviors and utilized them to fine-tune the LLM to make predictions.
We found that in general, enriching the model with a broader range of features, designing prompts
that reflect behavioral tendencies, and fine-tuning the model using human-like reasoning significantly
enhance the predictive capabilities of GPT-3.5. We achieved a result almost comparable to that of
Expected Utility Theory trained on a large dataset without showing GPT any training examples. This
provides crucial evidence and directs potential future research in operationalizing LLMs to make travel
behavior decision-making predictions that could benefit transportation planners.

I. INTRODUCTION

Since last year, Large Language Models (LLMs) have generated tremendous excitement in research
for their advanced language interaction and interpretation capabilities exhibited by products such as
ChatGPT. In transportation, studies have shown the abilities of GPT to make mobility predictions [1].
However, the question of whether LLMs formulate a similar reasoning process as humans when they
make decisions is unclear. In the context of mode choice decision-making using LLMs, it is crucial to
explore this process before one can safely and efficiently apply it to user products.

II. PROBLEM STATEMENT

A. Research questions and hypotheses
Understanding human travel behavior has always been a crucial part of transportation planning. Travel

mode choice is one of the characteristics that describe a person’s travel behavior, which refers to how
people make decisions on their means of travel. This research will focus on analyzing how LLM infers
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travel mode choice decisions for a person given relevant background information based on its reasoning
outputs. Specifically, the study will answer the following research questions:

• What kind of variable inputs impact its output reasonings, and in what way? Is it comparable to
the Expected Utility Theory?

• Does the way of describing the travel mode choice context matter for LLM? In other words, does
prompting LLMs to assume rational or behavioral agents change the prediction outcome?

• How does human intuition play a role in helping LLM to make better decisions?

B. Significance and purposes
Since many companies are developing solutions to utilize the power of LLM in user products to make

mobility recommendations to people, this project can help us understand the trustworthiness of LLMs
by analyzing their reasoning limitations or potentials in the context of travel mode decision-making.

III. LITERATURE REVIEW

A. Large Language Models
Large Language Models (LLMs) typically refer to the language models based on the Transformer

architecture with more than hundreds of billions of parameters which have been shown to have abilities
to excel in many complex tasks [2]. Wei et al. [3] have demonstrated the emerging abilities of LLMs
that only appear in larger models and cannot be predicted based on smaller models’ performance.
Newer models such as GPT-4 illustrated strong capabilities in language processing and manipulation,
quantitative reasoning, as well as planning and learning [4]. Products like ChatGPT which implemented
LLMs into chatbots and search engines that are easily accessible by the general public generated
tremendous attention and excitement in this field [2].

While there is rarely a study that specifically addresses LLMs in the context of predicting human
travel behavior, some sources that relate to the topics of LLMs predicting human behavior and displaying
biases in decision-making help us understand the capability and limitation of LLMs and thus design an
effective experiment.

Before proceeding, it is essential to consider how human bias can influence LLMs. Agrawal et al.
(2023) point out that while LLMs are proficient in making predictions, they inherently lack the ability
to exercise judgment in decision-making [5]. Such judgment requires an understanding of individual
preferences and contexts, an area where LLMs fall short. To address this, “reward function engineers”
play a crucial role in incorporating human judgment into LLMs. This approach is evident in models
like ChatGPT, which have been fine-tuned with human feedback to yield outputs that are contextually
relevant, safe, and of high quality. This integration of human judgment significantly boosts the practical
utility of LLMs in various applications. However, it simultaneously introduces a vulnerability to human
biases, as these models are shaped by human input and perspectives.

Meanwhile, a study by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL)
demonstrates that LLMs can exhibit biases similar to human decision-making and explores logic as
a means to mitigate these biases [6]. They experimented with logic-aware models trained to discern
relationships between sentences based on context and semantics, effectively reducing harmful stereotypes
compared to baseline models. For example, a logic-trained model neutrally interprets the relationship
between “the person is a doctor” and “the person is masculine,” countering the stereotype-based corre-
lations in common models.

While these results do not directly address whether LLMs exhibit behaviors like those in Prospect
Theory or their ability to infer human choices in travel mode selection, they highlight the stereotyped
nature of LLMs and suggest methods to develop less biased LLMs for transportation applications.
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B. Decision Making Frameworks
1) Expected Utility Theory: Commonly used as a framework for understanding how people make

decisions, Expected Utility Theory (EUT) claims that, given decisions with uncertain outcomes asso-
ciated with certain payoffs, agents will act rationally, acting in a way that maximizes their expected
utility. EUT calculates this value using the traditional expected value formula. We take all the potential
outcomes of making a decision, multiply them by their probabilities, find their sum, and see if the
result is greater than the result of making a different decision. If it is, we choose that option. In other
words, we want to make the choice that maximizes Σipiui over each associated outcome i. An important
underlying assumption of this model is that we, when faced with uncertainty, are able to accurately
judge the probability of any event taking place. This raises concerns because, as we will discuss, humans
tend to predictably overweight or underweight certain probabilities, causing our estimates of expected
utility to be incorrect.

An important distinction from behavior-facing theories such as Prospect Theory is that this model uses
a utility function that depends on both the potential change in utility and the current level of wealth. As
a result, two agents faced with the same situation may be predicted to make different decisions because
of different levels of wealth. It also does not consider the framing or risk-averse nature of the individual
making the decision.

2) Prospect Theory: An alternative, more widely accepted human behavior theory is Prospect Theory.
It builds on two important ideas about our decision-making process.

Firstly, we experience a phenomenon called the endowment effect, where, after making any kind of
decision, regardless of how we felt prior to doing so, we start to become attached to the outcome of
that decision. This is what drives campaigns such as money-back guarantees and free trials because
businesses know that, after purchasing, people will be reluctant to return the product due to their
emotional attachment to it [7].

Secondly, Prospect Theory relies on the idea that there is often not one objective way to present
choices. We present using gain framing (emphasizing the benefits of either situation) or loss framing
(emphasizing what we stand to lose). Tversky and Kahneman found that, under the former, people tend
to be risk averse, while under the latter, people are more risk-taking [8].

We also consider that we, as humans, typically cannot calculate probabilities with 100% accuracy.
Specifically, we overestimate low probabilities and underestimate high probabilities, which means we
need a function to calculate the perceived probability when getting our expectations. The function in
question is π(P ) = P γ

(P γ+(1−P )γ)
1
γ

where P is the probability of an outcome. We find the value of each

outcome with v = xα for gains, and v = −λ(−x)α for losses. Here, x is the change in wealth, and λ is
the coefficient of loss aversion, indicating the extent to which the individual wants to avoid losses. For
each decision, we find Σiviπi for each outcome i, and choose the decision with the highest summation.

C. Multinomial Logistic Regression
A popular tool for discrete choice prediction models is multinomial logistic regression, which is meant

for predicting the value of a categorical dependent variable based on the values of several independent
variables[9]. It is essentially traditional logistic regression, but capable of handling outcome variables
with more than two categories.

A significant advantage is the few assumptions required to perform this kind of regression. Unlike
other models, we do not make many critical assumptions about the underlying distribution of the data.
Firstly, there is no assumption of normality, meaning multinomial regression works whether the data
follows a normal distribution or not. For other methods, such as t tests, break down completely if the
data is, in reality, not normal. Secondly, we do not assume linearity, which means the relationship
between the independent and dependent variables, if one exists, does not need to be linear. Finally, we
do not need homoscedasticity, which states that variance should remain consistent for all values of an

3



independent variable. For example, within one variable, values of lower magnitude should not yield
lower residuals than those of higher magnitude. Without this assumption, there are many models that
yield skewed results, but it is not a problem for multinomial regression. However, there are some key
assumptions that must be satisfied. The first is independence among the alternatives of the dependent
variable. Secondly, each independent variable has one, and only one, value for each case.

Finally, we need non-perfect separation, meaning the outcome variable cannot clearly separate any
of the independent variables. An example of a dataset that fails this requirement would be one in which
there is some constant, c, such that, anytime the outcome variable takes on its first value, the predictor
variable is less than c, and when the outcome variable takes on its other value, the predictor variable is
greater than c.

There are other important constraints that must be met, such as not having outliers and all continuous
variables being linear. After getting our coefficients, we must decide whether they indicate a true
relationship between the predictors and the outcome variables using a hypothesis test. Our null hypothesis
is that there is no relationship between the supposed predictors and the outcome variable, which would
yield coefficients of 0. Our alternate hypothesis is that there is a relationship between these variables.
Once we have the coefficients from our model, we calculate the probability of getting them, given that the
null hypothesis was true. If this probability is less than 0.05, we reject the null hypothesis, determining
that the coefficients imply a relationship between our variables. Because the probabilities involved are
typically incredibly small, we use the log-likelihood (the natural logarithm of the probabilities) instead
of the probabilities themselves. When running the model, we start at iteration 0, where we find the
log-likelihoods associated with the null model, in which none of the predictors are included. Afterward,
we introduce the predictors and, for every iteration, make adjustments to the coefficients in an attempt
to decrease the log-likelihood. Once the differences in logs between iterations become relatively small,
we conclude that the model has “converged” and return the coefficients associated with this model.

IV. METHODOLOGY

As discussed in the problem statement, this research aims to examine how LLM makes decisions
compared to that of traditional models, such as the Expected Utility Theory, and how to improve their
decision-making process based on behavioral theories. To explore this, As shown in 1, we first established
the Utility Function based on the Swissmetro dataset as the benchmark model. Then, we examined and
compared the efficacy of Large Language Models (LLMs), specifically ChatGPT 3.5 (referred to as
’Vanilla GPT’) against the benchmark in predicting travel mode choice decisions. Moreover, we also
tested how framing the prompt as ”rational” or ”Prospect Theory aware” can affect the predictions.

In the second part of the study, we extended our analysis through a custom survey that captures
travel mode choices and reasonings under three distinct scenarios: Daily Commute, Weekend Trip, and
Business Travel. The survey findings were then used to fine-tune the Vanilla GPT model. The enhanced
model was subsequently tested against the Swissmetro dataset to evaluate whether the fine-tuned GPT
model offers better explanatory power for people’s travel mode choices. To analyze how different features
might play a role in the performance, both models are trained with combinations of three different sets
of variables: plain (basic travel information), demographics, and other factors (such as luggage).

A. Data
The Swissmetro dataset [10] was employed to design and compare the decision-making processes

of both LLM and EUT models. The data was gathered from surveys conducted onboard trains and
surveys mailed to car users in Switzerland, generating a total of 10,728 entries of travel choices among
Swissmetro, train, and car. The dataset includes a range of variables such as travel time, cost, travel
purpose, ticket type, demographic details of the traveler, and the mode of transport used by the person.
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Fig. 1: Method Flow Chart.

B. Testing Against Swissmetro Dataset with the EUT Method
Although Expected Utility Theory works by calculating the expected utility of any given decision

and choosing the one with the maximum value, this is difficult to execute in practice because we do not
know the exact utilities associated with any outcome. In many cases, we may estimate this using some
change in dollar amounts. This works especially well for gambles, where we know exactly how much
we stand to lose or gain, but it breaks down when we are dealing with situations such as the one in the
SwissMetro dataset. We do not know how much the participants will suffer or benefit from choosing
the train, the metro, or their cars. We considered estimating this as the cost of each option, but factors
such as time, headway, habits, availability, and others play a significant role in the decision respondents
ultimately made. Because of this, we decided to use a multinomial logistic regression model in the R
programming language to estimate the relative importance of each factor to the final choice, as well as
which alternative it supported the most.

We split the data into training and test datasets, using 70% for the former and the remaining 30%
for the latter. We attempted to use the full set of columns included in the original dataset, but removed
some due to rank deficiency issues (the train and metro were always available, so they were, for all
intents and purposes, the same, non-linearly independent columns). We kept the CHOICE column,
representing our dependent variable, as well as columns that were both independent and relevant to the
final decisions. These ended up being GROUP, AGE, INCOME, PURPOSE, MALE, GA, WHO, TRAIN CO,
CAR CO, SM CO, SM TT, TRAIN TT, CAR TT, and CAR AV). Notice that CAR AV (car availability) is
kept although TRAIN AV and SM AV were not. This is because many individuals participating in the
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survey did not have access to private vehicles, but the train and metro apply to everyone the same. The
GA variable represents whether a participant has a Swiss annual season ticket for the metro (1 if they
do and 0 if they do not). WHO represents who would pay for the transportation, the CO variables are
the cost, TT is total time, and GROUP is whether they are current drivers or current rail users.

After cleaning the data, we turned the dependent variable, CHOICE, into a factor and releveled the
table with a CHOICE reference of 0. In R, a factor is simply a categorical variable. Due to the fact that
the CHOICE column contains numbers in the original dataset (0 for unkown, 1 for train, 2 for metro,
and 3 for car), it is automatically interpreted as an integer value. Converting it to a factor allows the
model to know that it is, in fact, a categorical variable capable of taking on 4 distinct values. We also
call the relevel function with a reference of “0” to order the alternatives from 0 to 3 in increasing
order. We store the releveled alternatives in a new column we call “out”.

After our data is cleaned and contains the correct data structures, we import R’s nnet (neural
net) library, useful for feed-forward neural networks and multinomial log-linear models. We create a
model using the multinom function and provide it with the appropriate parameters. First, we need
the dependent column, which in this case is “out”, as it contains the choices as factors and is releveled
using “0” as the baseline. Then, we need the columns holding our independent variables, GROUP, AGE,
and the others described above. The last requirement is data, which, in this case, is the cleaned data
from before.

To measure the accuracy of our model, we generate a confusion matrix from the results of calling
R’s predict function on the cleaned test data. We sum the diagonal components, divide them by the sum
of all the entries in the table, and save the result for our accuracy.

Having established a benchmark, we then shifted our focus to exploring the capabilities of LLMs.

C. Testing Against Swissmetro Dataset with the Vanilla GPT
In this phase, we evaluated the Large Language Model, specifically ChatGPT 3.5, referred to as

’Vanilla GPT’. The model’s predictions regarding travel mode choices were directly compared with our
EUT benchmark.

1) GPT Application Programming Interface (API): To assess the ability of LLMs, the study leveraged
Open AI’s API of the model GPT-3.5 [11]. Each call requires a textual input specifying the task or
question to be answered by the GPT model, which is often called a prompt. The API returned the
model’s generated output. The temperature parameter was set as 0 to avoid variances in the API
outputs.

2) Feature Choice: This part of the research analyzed how different features might influence the
model output reasonings. Three sets of conditions were experimented with. First, only features related
to travel time and travel costs were provided in the background information section. Second, travel
time, travel cost, and demographic information of the traveler were included in the background section.
The demographic information includes income (high or low income), gender (male or female), and age
(senior or not), all binary variables. Lastly, other features provided in the dataset were fed into the
prompt, which includes luggage information, Swiss annual season ticket holdings, current mode usage,
travel purposes, and who pays for the trip. To be able to compare with the EUT results, the feature
choice in the third scenario matches the features used in EUT.

The inferred travel mode and the reasoning provided by the GPT model were recorded and compared
with the actual mode choice. The assessment process included comparing the LLM’s output accuracy
with that of the EUT using the same sets of input features. The reasonings of the LLM output were
also compared with the EUT. To do this, we analyzed the occurrence of the feature in the reasoning
in each trial of the testing and took the percentages of the occurrence frequency. In this way, we can
understand what features are important for LLMs and how they compare with EUT.
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3) Prompt Design: A simple prompt template was used, including two sections: background infor-
mation about the person’s trip, which includes the feature choices described above, and a description
of the task of making inferences about the travel mode choice. For the fair comparison, we restricted
the amount of information given to the GPT agent. For instance, we didn’t explicitly tell the language
model about the Swissmetro, as we didn’t in the community survey. We expect the LLMs to learn about
the new travel mode from the different travel costs and time information. The numerical features are
converted into sentences so that GPT can understand them better. To analyze how language instruction
can influence the prediction result and to elicit the relevant knowledge in the LLM training, we provided
two prompts for LLMs, one instructs GPT to think as rational individuals, while the other tells GPT
they are influenced by behavioral theories such as Prospect Theory. The Prospect Theory is understood
by LLM from two sources. First, we induce its knowledge on the Prospect theory based on the large
corpus of texts it has trained on. Second, we explicitly told some main ideas in Prospect theory such
as risk aversion. Examples of each prompt are presented below:

Rational Agent Prompt: Consider yourself as a rational human. You are a male older than
65 years old. Taking the Train takes 153 minutes and costs 139 Swiss Franc. Taking the
Swissmetro takes 117 minutes and costs 181 Swiss Franc. Taking a Car takes 104 minutes
and costs 123 Swiss Franc. You are taking luggage with you. You do not own a Swiss annual
season ticket for the rail system and most local public transportation. You are a current car
user. You are traveling for business purpose. You and your employer share the travel cost.
Will you take the Train, Swissmetro, or Car? Think step by step. Organize your answer in a
JSON object with two keys: ‘prediction’ (the predicted travel mode, one of Train, Swissmetro,
or Car) and ‘reason’ (explanation that supports your inference).
Prospect Theory Aware Agent Prompt: Consider yourself as a human influenced by the
prospect theory, and want to avoid uncertainty and risks. Thus, you tend to choose your current
mode of transportation unless other modes are much superior than the current ones. You are a
male older than 65 years old. Taking the Train takes 153 minutes and costs 139 Swiss Franc.
Taking the Swissmetro takes 117 minutes and costs 181 Swiss Franc. Taking a Car takes 104
minutes and costs 123 Swiss Franc. You are taking luggage with you. You do not own a
Swiss annual season ticket for the rail system and most local public transportation. You are
a current car user. You are traveling for business purpose. You and your employer share the
travel cost. Will you take the Train, Swissmetro, or Car? Think step by step. Organize your
answer in a JSON object with two keys: ‘prediction’ (the predicted travel mode, one of Train,
Swissmetro, or Car) and ‘reason’ (explanation that supports your inference).

The final step in our methodology was to fine-tune the LLM using custom survey data, aiming to align
the model more closely with human reasoning patterns in travel mode choices.

D. Fine-Tuning LLM with Custom Survey Data and Testing Against Swissmetro Dataset
The second part of the study involved enhancing the LLM’s capability in predicting travel mode

choices through a custom-designed survey and subsequent testing against the Swissmetro dataset.
1) Survey: A custom survey was conducted to gather data on travel mode choices and reasoning

across three distinct scenarios: Daily Commute, Weekend Trip, and Business Travel. The survey began
by collecting demographic information, including gender, age range, and annual household income, to
understand the diverse backgrounds of the respondents. In each scenario, participants were presented
with unique travel situations and offered choices between a Car, Train, or SwissMetro, each with specific
travel times and costs. Participants were required to provide explanations for their choices, a crucial
aspect as these reasonings were used to contextualize and fine-tune the Vanilla GPT model.

2) Fine-Tuning GPT Model: Drawing from the insights gained from the survey, the Vanilla GPT
model (ChatGPT 3.5) was fine-tuned to align more closely with human reasoning patterns and prefer-
ences in travel mode selection. We customize the GPT model for our application by using fine-tuning
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features offered by OpenAI [12]. We put the chat history of all choice results and their reasoning data
from the survey in text form. This fine-tuning process involved adjusting the model to incorporate the
nuances and specific reasoning highlighted in the survey responses. During the fine-tuning process,
we trained 1,190,420 tokens, and it showed 0.1104 training loss. Figure 2 shows the training loss and
accuracy of fine-tuning process of GPT models.

Fig. 2: Training loss and accuracy of fine-tuning GPT models.

3) Testing the Enhanced Model Against Swissmetro Dataset: Once fine-tuned, the enhanced GPT
model was tested against the Swissmetro dataset. This step was crucial to evaluate the improvement
in the model’s performance and its ability to offer better explanatory power for people’s travel mode
choices. The goal was to determine whether the fine-tuned model could more accurately mimic human
decision-making processes and provide reliable predictions in the context of travel mode selection.

E. Evaluation Criteria
Both accuracy and the macro F1 score were used to evaluate the mode choice prediction in LLM

and EUT. In addition, reasoning output from LLM was evaluated manually to check if the logic makes
sense and how it assigns priority to different features. Since the second step involved manual inspection,
for ease of evaluation, this section only used 150 samples, 50 from each travel mode.

V. RESULTS AND INTERPRETATION

A. Overall Results

TABLE I: Overall Results

Model Specification Feature Choice Accuracy Macro F1 Score
EUT travel time and cost + demographic + other 0.691 ± 0.000 0.59± 0.000

Vanilla GPT, Rational Agent travel time and cost 0.456± 0.003 0.382± 0.004
Vanilla GPT, Rational Agent travel time and cost + demographic 0.493± 0.014 0.430± 0.020
Vanilla GPT, Rational Agent travel time and cost + demographic + other 0.491± 0.006 0.473± 0.006

Vanilla GPT, PT-Theory Aware Agent travel time and cost 0.582± 0.011 0.569± 0.010
Vanilla GPT, PT-Theory Aware Agent travel time and cost + demographic 0.607± 0.011 0.597± 0.012
Vanilla GPT, PT-Theory Aware Agent travel time and cost + demographic + other 0.631± 0.008 0.620± 0.008

Fine-Tuned GPT, PT-Theory Aware Agent travel time and cost 0.551± 0.029 0.529± 0.033
Fine-Tuned GPT, PT-Theory Aware Agent travel time and cost + demographic 0.561± 0.036 0.532± 0.050
Fine-Tuned GPT, PT-Theory Aware Agent travel time and cost + demographic + other 0.636 ± 0.012 0.625 ± 0.004
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Fig. 3: Confusion matrix of results from multinomial expected utility theory model

Fig. 4: Coefficients yielded by the multinomial logistic regression model

B. Expected Utility Theory
Running the predict function using the multinomial EUT model yielded the confusion matrix in

Figure 3. For the test on the full dataset, using 70% of the data to train and 30% to test, dividing the
diagonal elements of the confusion matrix by the total number of predictions yielded 2253

3259
= 0.691.

Our EUT model, not augmented with machine learning, is able to accurately predict the mode choice
individual’s will choose in specific situations based on past data over two-thirds of the time. Keeping in
mind that we did not, and could not, know any information regarding the individual’s independent utility
curves, this is [relatively] high result. More sophisticated discrete choice models may have yielded an
even higher accuracy.

Although this model is quite accurate given the limited information, there is still room for improve-
ment. As our understanding of LLMs improves, we may be able to take advantage of this new technology
to close this gap and have better insight into the mode choices people are likely to make.

Figure 3 shows the coefficients with which our model converged using the multinomial logistic
regression approach. The categories with the highest coefficients were GROUP, INCOME, and MALE.
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AGE and PURPOSE had a moderate effect on the outcome, with approximately 6 and 8, respectively.
Surprisingly, the time, cost, and availability of each of the three modes seemed to all have negligible
impact on the choice of the participants. This may imply that demographic information is much more
relevant for mode choice prediction than specific information about the current context, especially when
that information is not too variable, such as the cost of a train ticket being stable.

C. Vanilla GPT Prediction
As shown in the overall result in Table I, the Vanilla GPT prediction has a relatively low prediction

accuracy. Since the share of each mode is equally distributed, randomly guessing each mode would
result in an accuracy of around 0.33. The Vanilla GPT is better than that by at least 38%, which
demonstrates its prediction is better than the random guess. Moreover, since the prompt is zero-shot,
meaning it has not seen any training examples, achieving this level of accuracy means the Vanilla GPT
has some common sense and can think analogous to humans to a certain extent.

To evaluate how the feature choice influences the prediction outcomes, the accuracy and the macro
F1 score are calculated with each combination of the feature choice sets, namely with only travel
time and cost, travel time and cost with demographics of the passenger, and travel time and cost with
demographics and other traveler information. When we use the rational agent prompt, the accuracy of
each set of features is 0.456, 0.493, and 0.491, respectively, while the F1 score is 0.382, 0.430, and
0.473, respectively. In this case, adding more information does not necessarily increase the prediction
accuracy but increases the F1 score. This means the additional information can help direct GPT to
achieve better predictions in different classes. On the other hand, in the context of the PT-aware agent
prompt, adding more features will improve both the output accuracy and the F1 score.

We also demonstrated the effect of designating specific roles in the prompt on the outputs. Specifically,
we compared how GPT can make predictions when they assume the role of rational versus PT-aware
agents. By changing the role from rational to PT-aware agents, the accuracy improved significantly
by 27.6%, 23.1%, and 28.5% for each set of feature choices. Such a dramatic increase could be
because when humans make decisions in real life, they do not always act rationally, and by framing the
prompt and eliciting the risk-averse aspect of the decision-making behaviors from LLMs, the predictions
capture more variances in the data. This also illustrates the powerful impact of role framing in prompt
engineering.

To explore the prediction errors in detail, we plotted the confusion matrix for each model specification
and feature choice sets, which are shown in Figure 5a, 5b, and 5c. In the rational agent scenario,
the model tends to predict Swissmetro when the true label is Train or Swissmetro due to the fact
that Swissmetro provides a better level of service most of the time; thus, the rational agent chooses
Swissmetro. When we add more features to the prompt, the prediction can better identify the mode choice
for Train, but at the same time, the prediction accuracy for Car reduces. This might be because more
information can confuse GPT, which factor plays an important role in mode choice decision-making.

On the other hand, when we replace the rational agent prompt with a PT-aware prompt, the confusion
matrix improves, as shown in Figure 6a, 6b, and 6c. Specifically, the model can make better predictions
when the true label is Car or Train, but its prediction power weakened towards Swissmetro. This could
be resulted from the fact that the prompt over-emphasizing the uncertainty and risks associated with
the new modes, which is Swissmetro in this case.

Lastly, we analyzed the feature importance in terms of the percentage of each feature occurred in
GPT’s output reasonings. Figure 7 demonstrates the feature importance for the rational agent in the
vanilla GPT. The distribution of the feature importance is very different as displayed by the coefficient
in the EUT model. Interestingly, the rational agent is able to figure out that the most important features
are ‘cost’ and ‘time’, which were considered in almost all the cases. This conforms with human intuition.
‘Purpose’ also serves an important role, occurring in about 70% of the cases. Other factors such as
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(a) travel time and cost (b) travel time and cost + demo-
graphic

(c) travel time and cost + demo-
graphic + other

Fig. 5: Confusion matrix of the vanilla GPT, rational agent prompt

(a) travel time and cost (b) travel time and cost + demo-
graphic

(c) travel time and cost + demo-
graphic + other

Fig. 6: Confusion matrix of the vanilla GPT, prospect theory-aware agent prompt

‘who’ (who pays for the travel), and ‘group’ (the current mode of transportation that the passenger is
using) play a less important role, with less than 30% occurrence in the reasonings.

On the other hand, the feature importance for PT-aware agent in the vanilla GPT has a slightly
different focus, which can be illustrated by Figure 8. While the primary features considered are still
‘cost’ and ‘time’, the PT-aware agent cares less about the ’purpose’ and cares more about ‘group’ (the
current mode of transportation that the passenger is using). This makes sense since the PT-aware agent
would consider not only how they are traveling but also what the potential risks associated with that
mode are.

To further examine whether the GPT has sufficient math capabilities to come to evaluate the features
‘cost’ and ‘time’, we manually examined the first 25 reasoning output by the Vanilla GPT rational agent
version with full feature choices. We found out that, in general, GPT has a basic ability to distinguish the
magnitude of the values. It is sometimes able to provide the reasoning in terms of the correct time/cost
differences between modes. However, it did make several mistakes when comparing the travel time
and cost across different modes. In the 25 samples examined, we found three samples with incorrect
reasonings, marking the fastest or cheapest mode wrong.

D. Fine-Tuned GPT Prediction
The fine-tuned GPT model, particularly with Prospect Theory Aware Agent configuration, demon-

strates a significant improvement in predictive performance. As evidenced in Table I, the model’s
accuracy and macro F1 score are substantially higher compared to other configurations, especially
when all features (travel time and cost, demographic, and other traveler information) are included.
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Fig. 7: Percentage of samples utilizing each feature in their reasoning, rational agent prompt with travel
time and cost + demographic + other features

Fig. 8: Percentage of samples utilizing each feature in their reasoning, prospect theory-aware agent
prompt with travel time and cost + demographic + other features

When compared with the Vanilla GPT models, the fine-tuned GPT model with all feature sets
improves the prediction accuracy. The results indicate that the fine-tuned model benefits greatly from
the comprehensive inclusion of features. This fine-tuned model outperforms the other configurations,
suggesting that the process of fine-tuning, in conjunction with a broader range of features, optimizes
the model’s ability to make accurate predictions. The enhanced performance of the fine-tuned model is
indicative of its advanced learning and adaptation mechanisms, which are pivotal in handling complex
tasks.

Figure 9 displays three confusion matrices for a fine-tuned GPT model with prospect theory awareness,
each corresponding to a different set of input features. In Figure 9a, the model strongly favors car
predictions with a high true positive rate but is less accurate for Swissmetro and train predictions.
Adding demographic data in Figure 9b slightly improves Swissmetro predictions but reduces accuracy
for car and train. The most balanced performance across all transport modes is observed in Figure 9c,
where the inclusion of travel time, cost, demographic, and other features results in a notable increase
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(a) travel time and cost (b) travel time and cost + demo-
graphic

(c) travel time and cost + demo-
graphic + other

Fig. 9: Confusion matrix of the fine-tuned GPT, prospect theory-aware agent prompt

in the true positive rate for trains, a moderate rate for Swissmetro, and a slight reduction for cars. This
suggests that a richer feature set enhances the model’s ability to discriminate between different modes
of transportation more effectively.

Fig. 10: Percentage of samples utilizing each feature in fine-tuned GPT model’s reasoning (prospect
theory-aware agent prompt with travel time and cost + demographic + other features)

Figure 10 shows a similar trend with ‘cost’ and ‘time’ being the most utilized features in the model’s
reasoning process. This suggests that regardless of the model configuration, these two features are
considered highly influential in the decision-making process of the model. However, there might be
differences in the relative importance of subsequent features like ‘purpose’, ‘group’, and ‘who’, which
could indicate that fine-tuning the model or incorporating prospect theory influences how the model
weights different features beyond the most dominant ones (cost and time).

VI. DISCUSSION

A. Implications and Limitations
This study contributes to the field of urban mobility and AI by highlighting the potential and

capabilities of Large Language Models (LLMs) in predicting travel mode choices. The comparison
between LLMs and traditional Expected Utility Theory (EUT) models offers a perspective on how
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AI can simulate complex human decision-making processes. It also has practical implications for the
development of AI-driven mobility solutions, providing insights into the reliability of LLMs in real-world
applications. It suggests that LLMs, when fine-tuned with context-specific data, can potentially enhance
transportation planning and offer personalized travel recommendations. The study, however, is not
without its limitations. The primary limitation lies in the inherent ’black box’ nature of LLMs. Despite
their advanced capabilities, LLMs often lack transparent reasoning pathways, making it challenging
to fully understand and trust their decision-making processes unlike ‘logic’ models. Furthermore, the
study’s reliance on the Swissmetro dataset and a specific survey may limit the generalizability of the
findings. The biases inherent in the training data of LLMs also pose a risk of skewing the model’s
outputs, potentially leading to biased or inaccurate predictions.

B. Future Research
Future research could focus on addressing these limitations. Extending the study to include more

diverse datasets and real-world scenarios can enhance the explainabilty of LLMs. Meanwhile, further
exploration into making LLMs more transparent and interpretable is crucial. Efforts such as mitigating
biases in LLMs, ensuring fairness and inclusivity in model outputs, and continually updating models
to reflect changing societal norms and behaviors will be vital in advancing the application of AI.
Exploring the use of Small Language Models (SLMs) presents a promising avenue as well. SLMs, with
their lower computational requirements, offer a more resource-efficient alternative to LLMs, potentially
making them more accessible for smaller-scale projects. Additionally, as this study has also examined,
SLMs could be fine-tuned to be more specialized for tasks. It would offer more nuanced insights in
the context of urban transportation. Finally, the smaller size of SLMs may provide greater transparency
and interpretability in their decision-making processes, addressing LLMs’ ‘black-box’ nature.

C. Conclusion
This study demonstrates that LLMs, particularly ChatGPT, are promising in augmenting traditional

models for predicting travel mode choices. However, a cautious approach is needed in their application,
considering their limitations in transparency and potential biases. As AI continues to evolve, its integra-
tion into urban mobility planning must be accompanied by rigorous evaluation and ethical considerations
to ensure that it serves as a reliable, fair, and effective tool for enhancing connectivity among people.

APPENDICES
Appendix A: Contributions

• Jung-Hoon Cho: Responsible for fine-tuning the GPT model based on the survey results.
• Youry Moise: Focused on designing the Expected Utility function using the SwissMetro dataset.
• Gigi Sung: In charge of designing the survey and conducting its subsequent analysis.
• Hanyong Xu: Focused on testing and analyzing the reasoning of the Vanilla GPT model using the

SwissMetro dataset.

Appendix B: Survey Questions and Results
1) Survey Questionnaire

• Demographic Information
– Please select your gender.

Male; Female; Other/Prefer not to say.
– Please select your age range.

<23; 24-39; 40-54; 55-65; 66 or older.
– Please select your annual household income.

Less than $56,000; $56,000 to $112,999; $113,000 or higher; Prefer not to answer.
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• Overview
– “In this section, you will be presented with three distinct travel scenarios. Each scenario

describes a hypothetical situation with varying travel times, costs, and other parameters.
You will be asked to choose your preferred mode of transportation for each scenario and
explain the reasoning behind your choice.”

– Three modes of transportation
∗ Car
∗ Train
∗ SwissMetro: an underground transportation network intended to provide a high-speed,

efficient, and cutting-edge alternative to the existing forms of public transport in Switzer-
land.

• Scenario 1: Daily Commute
”This scenario involves your daily travel from home to work. You can choose between a Car,
Train, or Swissmetro.” (Figure 11a)

• Scenario 2: Leisure Trip
”Imagine a leisure trip to a nearby city. The transportation options are Car, Train, or Swiss-
metro.” (Figure 11b)

• Scenario 3: Business Travel
”This scenario involves traveling to a distant city for a business meeting. You have the choice
of Car, Train, or Swissmetro” (Figure 11c)

(a) Scenario 1 (Daily commute) (b) Scenario 2 (Leisure Trip) (c) Scenario 3 (Business trip)

Fig. 11: Survey questions on three different scenarios: Scenario 1 (Daily commute), Scenario 2 (Leisure
Trip), and Scenario 3 (Business trip)

2) Survey Results
Figure 12 shows the demographic information of the survey respondents. Figure 13a, 13b, and
13c show the pie chart of choice distribution for daily commute, leisure trip, and business travel,
respectively.
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Fig. 12: Survey results: Demographic information
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(a) Scenario 1 (Daily Commute)

(b) Scenario 2 (Leisure Trip)

(c) Scenario 3 (Business Travel)

Fig. 13: Survey results on three different scenarios: Scenario 1 (Daily commute), Scenario 2 (Leisure
Trip), and Scenario 3 (Business trip)
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Appendix C: COUHES Approval
MIT COUHES approved this research as it meets the evaluation exemption criteria. (Figure 14)

Fig. 14: MIT COUHES approval of exempt evaluation
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